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Research Thrust Areas
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Power Plant:
Fault prediction/diagnosis and model
predictive control for efficient automation

of power plant operations

Reservoir/Resource:
Customized predictive analytics and
closed-loop control for geothermal

reservoirs

Power Plant Reservoir/Resource
production el N ~ Energy Conversion Plant
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USC-Cyrq Energy Inc. Collaboration .
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USC Team

- Behnam Jafarpour, Pl (Professor, CHE/ECE/CEE)
Deep learning for subsurface energy systems
- Robert Young (Associate Professor of Chemical Engineering Practice)

Process modeling and control

-> Anyue Jiang (PhD Student, Chemical Engineering)
Recurrent neural networks for multi-physics data
- Zhen Qin (PhD Student, Petroleum Engineering)

Optimization and control with recurrent neural networks

- Yingxiang (Sam) Liu (PhD Student, Electrical and Computer Engineering)

Cyrq Energy Inc. Team

- Trenton Cladouhos (PhD)
VP of Resource
-> Jalal Zia (PhD)
VP of Engineering
-> Dave Faulder
Director of Reservoir Engineering
- Michael Swyer

Senior Geoscientist

Anomaly detection and predictive control based on neural network models | = lan Spanswick

- Wei Ling (PhD Student, Chemical Engineering)

6 Dynamic deep neural network models for power plant operations

President (O2RC Solutions)

i

sering

9/30/2021




Reservoir/Resource

Reservoir/Resource:
Customized predictive analytics and
closed-loop control for geothermal

reservoirs

Field Data and Simulation Model

Reservoir/Resource

Permeability above 50 mD

Temperature = 340 °F (20 years)
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Simulation & Deep Learning Model
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Simulation Model
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Deep Learning Model
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Short-Term and Long-Term Predictions

Raw hourly data for o
short-term prediction o

Smoothed weekly
data for long-term
prediction

High frequency data
Low frequency feature

Variability introduced by shut-in
10
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Long sequences
Possible long-term predictions

Steps that should be ignored
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Short-Term Predictions

Short Term Predictions (Using historical data)
Producer BHP Producer Enthalpy

Long-Term Predictions (using ensemble of simulated historical data)
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Field Performance Optimization

Objective Functions:

T
E =Z E,...kWh —E kWh
> Net Power Generated, net p Bross pumps

- Lt
- Min-max Temperature changes, J(u):= tz maxAT 7.u
T

J(u): = NltZ:Z AT 7u

- Min-Average Temperature changes

Control Variables:
-> Injection/Production Rate

Constraints:
-> Total production rate

- Mass balance (Production = Injection)

- Upper and lower bounds
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Objective Function

- Monitor: Acceptable prediction during optimization
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13 Maximizing Net Power Generation = improved temperature decline (sustainable production)
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Proxy-Based Optimization
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Validation of proxy-model-based optimization
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- Extrapolation: Optimal value higher than the maximum
value in training dataset.

Net Power Generation

Net Power Generation
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Proxy-Based Optimization
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Comments: S
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- Validation: simulation-based optimization s
- Controls & objective: converge to same values. S
. . Injection wells
- Computational cost: Proxy: 60~140. Sim: 360
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Power Plant .
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Power Plant:
Fault prediction/diagnosis and model
predictive control for efficient automation

of power plant operations
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Power Plant
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Predictive Model

HYSYS

Field Data

Data pre-processing ——— Data-drive predictive model Simulated Data (HYSYS)
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Dynamic Neural Network Model )
N e
(i) Encoder captures data patterns to enable dimensionality reduction and latent-space tepresentatiorn—

(ii) Latent-space dynamical model to compactly describe the evolution of the latent states
(iii) Decoder to map the resulting predictions in the latent space back to the original data space
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Fault Detection: Monitoring Index and Limits
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L o N cetng
Statistical Monitoring Index A
-> Squared Prediction Error (SPE) statistic, rooted in Principal Component Analysis
SPE = ||||? %: DNN prediction error
Control Limit
- The sample is considered normal if its SPE is below a certain threshold §2
- 62 is the upper limit of SPE with a confidence level of a in a y? distribution
§2=gxte where g=2 | p=2 g =ym i
a = YXna WHere g ==, R=5" 00 = Lj=i114)
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Validation with Pump Data )
1
Pump data: Before maintenance N < s

Pump data: After maintenance
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Model Predictive Control (MPC)
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Objective: Using the DNN model for Model Predictive Control (MPC)

MPC Example

Overall Workflow
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Minimize the mismatch Constraints represent
to the reference set point ~ Physical actuator limits and
safety bounds

d(t)
r: reference set points
d: disturbance
u: control input Objective Constrains
x: state
y: output
r(t) u(t)
MPC optimizer Plant
x(t
® State
estimation
y(®
MPC optimizer predict Some system states can
the future performance not be directly measured

and the optimal control
on next step over the
predict horizon

MPC Diagram
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Examples

Organic Rankine Cycle Power Plant

Measurements: 23 variables

Control variables:
» Condenser fan speed
» Inlet guide vanes (IGV) set point
» Working fluid pump speed

Disturbances:
» Ambient temperature
> Inlet brine variable
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Predictive Model

> Data resolution: hourly
» Training: 5000 samples
> Validation: 1000 samples
> Testing: 3000 samples

Model:

* Pastsamples k = 3,

* Latent variablen, = 6,

* Prediction horizonp = 12

RMSE = 0.07

24
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Organic Rankine Cycle Diagram

Control and disturbances

12 step ahead prediction for 23 variables
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Preliminary Results

Average improvement in net power production is 4.0%

MPC tries to increase pump speed, open the IGV, and decrease condenser fan

speed when the ambient temperature is relatively low.
25
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Preliminary Conclusions

Developed and applied deep learning-based prediction models for:

1) Energy production prediction and optimization (Reservoir)

2) Fault detection and MPC application (Power Plant)

General observations:
- Deep learning models are easy to develop and deploy for field applications
—> Short-term predictions with historical field data are generally acceptable
- May need additional data or constraints to enable long-term predictions
- Extrapolation (prediction out of training range) is challenging, need for physics
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