

SUMMIT

HERIOT WATT UNIVERSITY

Sebastian Geiger

Sep 30 – Oct 1 2021

Energi Simulation Chair for Fractured and Geothermal Reservoirs

- Previously Energi Simulation Chair for Carbonate Reservoirs (2010 to 2021)
- Aim: Use long-standing expertise in modelling naturally fractured reservoirs to tackle wider low-carbon geoenergy challenges beyond oil and gas
- Key research themes:
 - Ultra-fast static and dynamic modelling for (fractured) geological reservoirs
 - Characterising flow behaviours across scales (incl. machine learning and multi-scale imaging)
 - Testing technologies in real field applications

Imperial College London

If you can't draw it, don't model it

Rapid Reservoir Modelling (RRM): Fast prototyping of reservoir models with dynamic feedback

Carl Jacquemyn, Gary Hampson, Matt Jackson – ICL Julio Machado Silva, Sicilia Judice, Fazilatur Rahman, Mario Costa Sousa – UofC Dmytro Petrovskyy, Sebastian Geiger – HWU

Persistent and ongoing problems with conventional workflows

• Efficient management of geoenergy reservoirs (geothermal, CCS, hydrogen, oil & gas) needs good reservoir models but current workflows face the following challenges:

- Slow turnaround time and linear workflows
- Geological concepts are locked in early
- Difficult (impossible?) to rapidly explore how range of concepts (engineering and geology) could impact on reservoir behaviour
- Fixed and pre-defined grid resolutions limit the spatial complexity and resolution of reservoir architectures that can be captured
- Integration across different disciplines difficult due to different software tools, grid types, and resolution

What is Rapid Reservoir Modelling (RRM)?

- In a nutshell... the development of a new, open-source software tool for
 - rapid creation of conceptual reservoir models
 - rapid modification of existing reservoir models
 - rapid calculation of key static and dynamic reservoir properties
 - prototyping of reservoir concepts and models and testing with quantitative data using a range of input data (e.g. seismic lines, outcrop analogues, blank screen...)
- RRM uses a simple, intuitive, and interactive interface
 - to do things that are difficult using conventional geomodelling tools

• Not a replacement, plugin, or competitor for existing tool and software packages

Key components of RRM

- Sketch-Based Interface and Modelling (SBIM)
 - Intuitive and easy workflows
 - Anyone can use it, from undergraduates to professionals
- From 2D sketches to 3D surfaces
 - Cross-sections and map view are familiar for geoscientists
 - Surface-based representation
- Geological operators
 - Create geological consistent models in any order at any scale
 - Interpretations can evolve
- Flow diagnostics
 - Rapid calculation of relevant volumetric and fluid flow properties

Sketch-based Interface and Modelling (SBIM)

SBIM and surface-based modelling

- All geological heterogeneity is modelled as one or more discrete rock volumes bounded by surfaces ("geological domains")
- Hierarchy of multi-scale surfaces (faults, stratigraphy, facies, diagenetic bodies...)
- Petrophysical properties within geological domains are constant
- Equivalent to a grid-based approach but petrophysical properties are constant within geologically meaningful domains
- Geological operators in RRM define how surfaces interact with each other in a consistent way

Surface-based modelling concepts after Jackson et al. (2013)

Example geological operators for existing surfaces

- Basic rules for stratigraphic surfaces
 - Surface cannot cross
 - Surfaces cannot end within domain

From 2D sketches to 3D surfaces

Creating 3D surfaces with simple GUI and interactive hardware

From static models to dynamic feedback

- Grid is disposable and generated on the fly only when needed for calculations
- Three equations (steady-state) are solved to provide visual and interactive information in real time on
 - *Reservoir pressure and time-of-flight*
 - Reservoir partitioning, well allocations, and sweep efficiency
 - Effective permeabilities for upscaling
- Compare and contrast scenarios and development options to select "good" models for further full-physics simulations using (commercial) simulators

Flow diagnostics concepts after Moyner et al. (2014)

- Spring Canyon Mb., Book Cliffs, Utah
- Input data
 - 4 interpreted sedimentary logs
 - 1 interpreted wireline log
 - Map with log locations
- Average depositional strike and dip

- Different correlations and interpretations are possible
- No complicated workflow simple sketches allow to easily change the concept completely

- Different correlations and interpretations are possible
 - User experience and expertise
- Different approach
 - Top-down
 - Bottom-up
 - Flooding surfaces first
 - Obvious feature first
 - Hierarchically
 - ...
- Enabled by geological operators

A real-time screen recording of RRM

Open source

- Rapid Reservoir Modelling has clear goals
 - Model prototyping
 - Quantitative feedback on flow behaviour, e.g. for hydrocarbon, geothermal, CO₂ storage, or groundwater
- Potential userbase is much larger
 - Geoscience students discovering 3D relationships
 - During fieldtrips, directly interpret outcrops in 3D and understand impact on flow
 - Tool to communicate across disciplines with short turnaround times to link geology to fluid flow
- Availability please try it
 - *bitbucket.org/rapidreservoirmodelling/rrm*

Conclusions

- Prototyping tool for 3D geological modelling
 - Intuitive sketch-based interface
- Geological operators
 - Flexibility of sketching in any order
- On-the-fly application of operators
 - Interpretation on the fly
- Quantitative measures
 - Facies proportions, volumes...
 - Flow diagnostics: real-time dynamic and quantitative feedback

