

SUMMIT

Denis José Schiozer University of Campinas Sep 30 – Oct 1 2021

MODEL-BASED AND DATA-DRIVEN RESERVOIR MANAGEMENT THROUGH DIGITAL FIELDS CONCEPTS

UNISIM RESERVOIR SIMULATION & MANAGEMENT

INTEGRATION WITH: Geosciences Production Economic Evaluation Data Science OBJECTIVES Simulation Education Innovation Methodology Software

Introduction

- Improve decision making process using reservoir simulation models, data and special tools
- High investments, low flexibility, long-term projects (complex decisions)→ offshore and pre-salt fields
- Reliability and quality of studies
- Simulation (main tool) (high computational demand)
- High number of simulations (higher chances of better decisions)
- Multiple runs management multi-fidelity approaches
- Techniques to speedup decisions
- Digital fields (life-cycle and short-term forecast and decisions)

CLFDM

Closed Loop Field Development and Management

Model-based CLFDM

Black Step

- Focus of today's presentation
- Final decision → implementation in the field field
 - Development (design) variables (group 1 G1)
 - Management (control) variables (group 2 G2)
 - G2L lyfe-cycle rules selected in the blue steps
 - G2C cycle variables
 - G2S short-term → real time
 - Revitalization variables (group 3 G3)
- Operational noise (delays, availability, ...)

CL Cycles

Current Energi Simulation Chair Preparation to Digital Field

Main motivation: simulation models are often used for life-cycle objectives but not often used to shortterm, real-time applications → digital fields

Model-based CLFDM

Steps towards digital fields \rightarrow actions

- Use of reservoir simulation models for shorter-term decisions
- Problems detected so far
 - Better transition "past-future" for simulation models
 - Integration with production facilities to improve short-term forecast
 - Better estimation of forecast conditions
 - Emphasize differences of control variables, physical restrictions, reservoir, management, operational problems, prorating, maintenance, etc.
- Future steps
 - Integration with data-driven approaches (machine learning techniques)
 - Reduce size of CL Cycle
- Model quality indicators → fit-for-purpose models to be used in short-term decisions may be different
 - Multi-fidelity models
- Probabilistic approaches (as we use in life-cycle) may have to change
 - Less influence of several uncertainties

CLFDM – cycle and short-term control

Transition past \rightarrow future

Example of multiple realization runs that honors the past but with a future behavior inconsistent with data

Long-term effects small because material balance over time will approximate solutions

<u>Short-term effects</u> <u>very important</u>

Improvement of Data assimilation Process

Example of problematic well (real field)

Reservoir and production system data assimilation

- Methodology for data assimilation comprising reservoir model and production system
- Main contribution: inclusion of Vertical Lift Performance (VLP) tables (resulting from the production system data assimilation) in the reservoir data assimilation process

VLP as a uncertain parameter in data assimilation

Improvements in short-term production forecast

Example of well P3 forecast

BHP behavior
QL behavior

4200 4000 3800 3600 y = -Ax + B $R^2 = 0,9301$ 3400 0 2000 4000 6000 8000

Application (P3) \rightarrow future BHP ?

Steps towards digital fields

- Human-intervention-free forecast
 - Reservoir potential (reservoir pressure, fluids saturations)
 - Well: IP
 - Production facilities: pipes, pumps, valves, separators, ICV, ...
- Facilities constraints (physical limits) maximum capacities
- Field management: intentional controls to reach objectives

General control rules (setpoints) G2L

Next

Life-

cycle

cycle

• Control of cycle parameters \rightarrow G2C

- MT / ST operational management: well tests, preventive maintenance, prorating stops, ...
- Operational problems: random problems that change production systems
- Not Mapped Uncertainties \rightarrow not expected behavior in LC forecast

Quality over time (cycle)

S

Tracking NQDS over time after Data Assimilation

19

Model-based integration with data-driven

- Initial research lines (ST)
 - Data-driven (DD) approaches for short-term forecast (Other professors)
 - Data-driven (DD) to correct model-based short-term forecast
 - Model-based (MB) with uncertainties → boundary limits to DD forecast
 - Increase frequency of analysis in MB decisions (shorter cycles)
- •Future
 - Real-time
 - Possible applications for digital transformation

Final considerations

- Additional focus in 4 main areas (4 colors)
 - Models for short-term analysis: multi-fidelity analysis
 - Data assimilation for reduction uncertainties of reservoir models
 - Improvements of trasition past-future behaviour
 - Modification in methods to ST analysis
 - Production forecast
 - Life-Cycle (G2L) \rightarrow Cycle (G2C) \rightarrow setpoints for ST controls (G2S)
 - Multi-fidelity approaches
 - Decision analysis : Cycle \rightarrow ST \rightarrow RT \rightarrow Digital transformation
 - Probabilistic approaches used for MB Life-Cycle management → ST (less variability) (approaching deterministic ?)
- Preparation: digital field technology
- Application to pre-salt fields: giant carbonate fields with permanent 4D and intelligent completions – ICV, WAG-CO₂ injection, gas-driven optimization

Acknowledgments

SUMMIT

Denis José Schiozer denis@unicamp.br Sep 30 – Oct 1 2021

Extra Slides

Green steps challenges

- Speed up studies of complex and/or giant field
 - Representation of critical heterogeneities with low computational cost
 - Karst, vug, fracture flow modeling
- Near well upscaling

 \bullet

 \bullet

- LFM (low fidelity models), FOFE (fast objective function estimators) of petrophysical properties
 - Integration/combination with FOFE -> multi-fidelity
- Improve benchmarks: more realistic operational problems

Internal Benchmarks: UNISIM-I (typical of Campus Basin offshore field) UNISIM-II (pre-salt carbonate reservoir) UNISIM-III (pre-salt giant oil field) https://www.unisim.cepetro.unicamp.br/benchmarks/en/

Models for short-term behavior

Red steps challenges

- History matching → data assimilation to reduce uncertainties
- Reduction of uncertainties in petrophysical properties
 - ESMDA efficient HM method (EHM from Petrobras)
 - Collapse of models excessive uncertainty reduction
 - Methods that integrate with geostatistical: good results more complex to implement
- Integration with 4D seismic: quantitative solutions (SenRML)
- Model calibration to forecast short-term production (productivity deviation as new objective function)
- Fast procedures to apply in digital fields (\rightarrow short-term \rightarrow real time)
- Data assimilation applied to production facilities

Blue Steps - Challenges

- Optimization techniques
- FOFE (emulators, proxies, ...) and LFM
- Economic analysis / fiscal regimes
- Development plan (production strategies G1 design variables)
- Field management
 - Control variables (G2)
 - Revitalization variables (G3)
- Intelligent fields
- MIP (integration reservoir facilities)
 - Multiple reservoirs common production facilities
 - Flow assurance / subsea separation
- Improved recovery methods
 - Complex treatment of G2 for WAG-CO₂ with ICV options
- Preparation to digital transformation